Somerset Berkley Regional High School

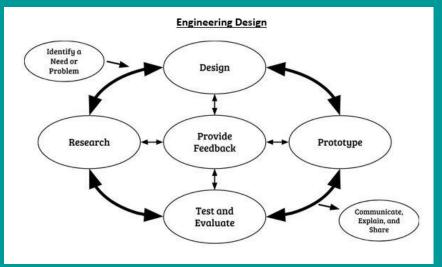
Robotics Engineering with LabView

Objective: To support the development of metacognitive skills and habits of reflection for effective problem solving

Planning; What should step one be? What do I know about the problem?


Goal setting Set realistic goals. How much time do I have?

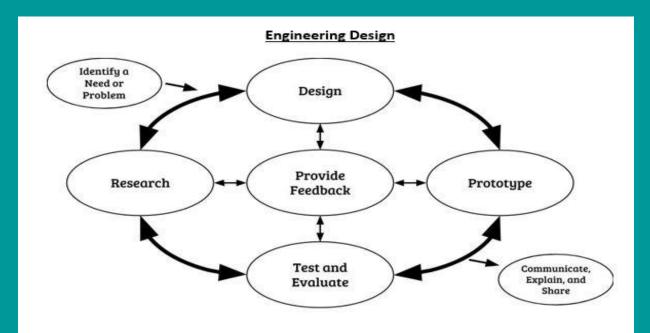
Monitoring progress Am I on the right track?


Adjusting What did I learn. Did I get the results I was expecting? If I could do this over again I would......

Engine Find Lasign Process

2016 Revised Massachusetts State Framework

Identify the need or problem


Identify a need or a problem. To begin engineering design, a need or problem must be identified that an attempt can be made to solve, improve and/or fix. This typically includes articulation of criteria and constraints that will define a successful solution.

Evidence: Add slide and describe what you already know about the problem. This helps to build an understanding of the problem

Describe the knowledge you will need to solve this problem.

the problem we already know about is we need to get the robot too follow the line, and not fall/ break

Research the problem

Research. Research is done to learn more about the identified need or problem and potential solution strategies.

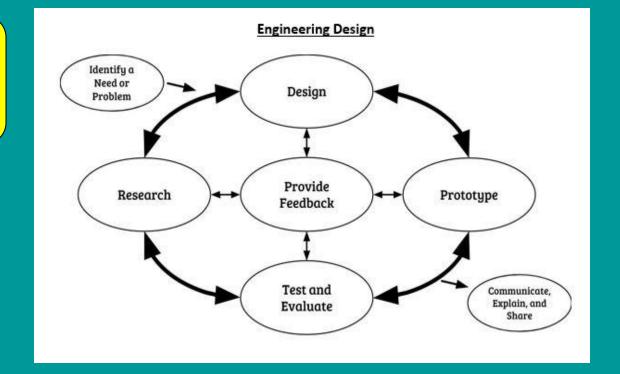
Decide what information is needed.

What should step one be?

Use appropriate tools and strategies to access the information Analyze the information gathered and its sources.

If there is more than one good answer to the problem, list the positives and negatives of each of the findings.

On your PowerPoint file show what you did for research.


*evidence

we need to know how to get the robot to follow the line

Step one is building the robot to use the light sensor correctly

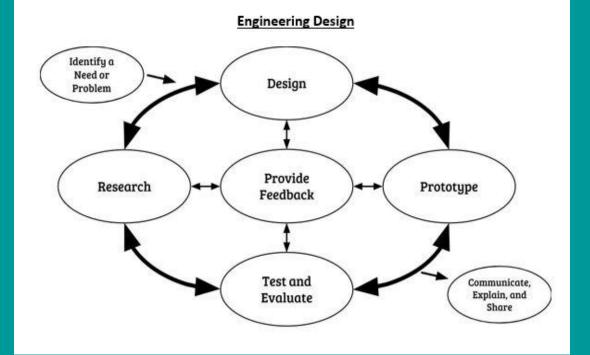
There is only one answer to the problem... use the light sensor to get on the line and stay on it

Design

Design. All gathered information is used to inform the creations of designs. Design includes modeling possible solutions, refining models, and choosing the model(s) that best meets the original need or problem.

Evidence: Clarify the roles of each team member, taking advantage of individual strengths.

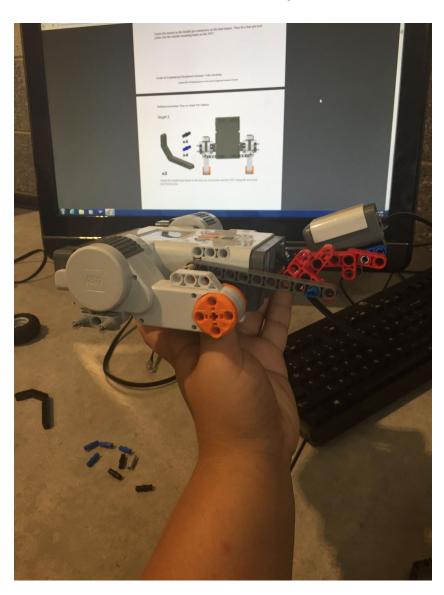
List the role of each member on the team


Prototype

A prototype is constructed based on the design model(s) and used to test the proposed solution. A prototype can be a physical, computer, mathematical, or conceptual instantiation of the model that can be manipulated and tested.

Evidence: Execute the plan, (build your robot) modifying as needed.

Test and evaluate


The feasibility and efficiency of the prototype must be tested and evaluated relative to the problem criteria and constraints.

Collaboratively decide whether the solution needs more work and repeat previous phases as needed.

- Does your robot work?
- Did it perform as expected?
- 3. What changes are necessary for the robot and the program?
- 4. Does it meet the original design constraints?
- 5. Is it safe?
- Students discuss what they liked best about the collaborative process and what could be done differently next time.
- Students present their solution to the other teams and celebrate the work of the problem solvers

evidence

Prototype picture and computer program

<u>evidence</u> modified prototype picture and computer program

Communicate the solution(s)

Provide the YouTube link of your video that shows how your robot meets the challenge.

YouTube video link:

https://youtu.be/3iV544TngI4 https://youtu.be/-Rto2x4oUZQ Reflection

Think about your professional destination. What skills and or knowledge are you going to need that you don't have or have enough of. Add a slide and make a list Reflect on your latest assignment in robotics and describe how what you just did supports what is on your list.

Letter to a future student

Take a few minutes to think of a time when you overcame a struggle in robotics class.

Reflect on the times when you failed at first but through persevering your brain created new neural connections and you eventually became better at the task at hand. Briefly describe this experience in a letter to a future robotics student. Dear Future Student.

Hello, for the light sensor part of the project you need to do a lot of programming to have your robot really excell. You also need do a lot of work every class and you'll surely succeed in robotics it's all about effort. And if you're robot is complete there are 4 videos you need.

Instructions for posting to Weebly

- 1. Go to file->download file and then choose PDF document (.pdf).
- 2. Then on your weebly website under Build Media section drag the file option and upload the PDF of your Slides presentation to your website